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Abstract

Rationale: In earlier studies, we have shown that nitrous oxide (N2O)-induced behavioral effects in rats and mice are mediated by benzodiazepine
receptors.
Objectives: This two-part study was conducted in order to investigate the possible role of serotonin (5-HT) in the behavioral effects of N2O by
clarifying its effects on regional brain concentrations of 5-HT and assessing the influence of 5-HT antagonist and reuptake inhibiting drugs on the
anxiolytic-like behavioral effect of N2O.
Methods: In experiment A, male, 150–200 g Sprague–Dawley rats were killed following a 15-min exposure to room air or 70% N2O. The frontal
cortex, hippocampus, corpus striatum and hypothalamus were dissected out and analyzed by HPLC with electrochemical detection for content of
5-HT and 5-hydroxyindoleacetic acid (5-HIAA); dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) were also measured. In experiment B,
male 18–22 g NIH Swiss mice were pretreated with the 5-HT2 antagonist cinanserin, the 5-HT3 antagonist LY-278,584, the 5-HT reuptake
inhibitor fluoxetine or saline and tested in the light/dark exploration test under 70% N2O 30 min after pretreatment.
Results: In experiment A, N2O produced differential effects on 5-HT neurons in distinct brain areas. There was increased 5-HT turnover in the
hypothalamus, decreased turnover in the frontal cortex but no changes in either hippocampus or corpus striatum. By comparison, dopamine
turnover in these brain regions was unaltered by N2O exposure. In experiment B, pretreatment with neither cinanserin, LY-278,584 nor fluoxetine
had any appreciable effect on the N2O-induced increase in time spent in the light compartment. Only cinanserin significantly reduced the N2O-
induced increase in transitions.
Conclusions: While neurochemical results suggest an effect of N2O on brain 5-HT function, there was no effect of 5-HT2 or 5-HT3 antagonists or
5-HT reuptake inhibitor on N2O-induced anxiolytic-like behavior.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Nitrous oxide (N2O) is the oldest anesthetic gas available and
continues to be widely used in combination with other
anesthetics for production of surgical anesthesia and, either
alone or in combination, for production of conscious sedation in
dentistry (Jackson and Johnson, 2002; Paterson and Tahmas-
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sebi, 2003). The mechanism of its analgesic effect is thought to
involve opioid receptors as the analgesia in human subjects is at
least partly reversed by the opioid receptor blocker naloxone
(Chapman and Benedetti, 1979; Gillman et al., 1980; Yang et
al., 1980). This is consistent with reports that N2O-induced
antinociception in experimental animals is antagonized by
opioid receptor blockers (Quock and Vaughn, 1995). The
mechanism of its anxiolytic effect in humans is uncertain,
although research in animal models of experimental anxiety has
implicated benzodiazepine receptors in the reduction in anxiety
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(Quock et al., 1992, 1993; Emmanouil et al., 1994; Li and
Quock, 2001).

The current pharmacological management of anxiety fo-
cuses on brain mechanisms involving benzodiazepine and 5-
hydroxytryptamine (5-HT) receptors. The current research
was conducted to ascertain whether 5-HT receptors might
also be involved in the anxiolytic effect of N2O. Towards this
end, one study (experiment A) was conducted in rats to
determine the influence of N2O exposure on brain mono-
amine levels, and another study (experiment B) was con-
ducted in mice to determine the influence of 5-HT receptor
antagonists and reuptake inhibitors on N2O-induced beha-
vioural effects.

2. Materials and methods

2.1. Experiment A

The objective of this experiment was to determine the
influence of a 15-min exposure upon 5-HT, dopamine (DA) and
their respective metabolites, 5-hydroxyindoleacetic acid (5-
HIAA) and 3,4-dihydroxyphenylacetic acid (DOPAC), in the
frontal cortex, hippocampus, corpus striatum and hypothalamus.

2.1.1. Animals
Male Sprague–Dawley rats, weighing 150–200 g, were

purchased from Sasco Inc. (Omaha, NE) for this research. After
an acclimatization period of 7 days, animals were randomly
assigned to one of the following two groups: group I, rats
(n=10) were exposed to 70% N2O mixed with 30% oxygen for
15 min; group II, control rats (n=10) were exposed to room air
for 15 min. These experiments were approved by an institu-
tional animal care and use committee and carried out in
accordance with the National Institute of Health Guide for the
Care and Use of Laboratory Animals (NIH Publication No. 80-
23, revised 1996).

2.1.2. Exposure to nitrous oxide
Rats were exposed in pairs to nitrous oxide inside a medium-

size AtmosBag® glove bag (Aldrich, Milwaukee, WI). The
sealed glove bag was filled with compressed air or a mixture of
N2O and O2 (all medical grade, Rockford Industrial Gas,
Rockford, IL) via a length of polyethylene tubing using a
portable N2O/O2 dental sedation system (Porter, Hatfield, PA).
The total gas inflow rate was 10 l/min (either 10 l/min
compressed air or 7 l/min N2O+3 l/min O2). The atmosphere
inside the glove bag was confirmed by a POET II® anaesthetic
monitoring system (Criticare, Milwaukee, WI).

2.1.3. HPLC quantification of brain monoamines
After 15 min, the glove bag was opened, and the rats were

quickly removed and sacrificed by decapitation. The brains
were dissected on ice, and the striatum, frontal cortex,
hypothalamus and hippocampus were removed. The tissue
samples were immediately frozen in liquid nitrogen and stored
at −80 °C until assayed. 5-HT, 5-HIAA, DA and DOPAC were
measured by high performance liquid chromatography (HPLC)
with electrochemical detector (ECD), as described by Sharp et
al. (1987) with some minor modifications (Papadopoulou-
Daifoti et al., 1995). After weighing, the dissected tissues were
homogenized and deproteinized in 500 μl of 0.2 N perchloric
acid solution containing 7.9 mM Na2S2O5 and 1.3 mM
Na2EDTA. The homogenate was centrifuged at 37,000×g for
30 min and the supernatant was stored at −80 °C. A reverse-
phase ion pair chromatography was used in all analyses. The
mobile phase consisted of an acetonitrile −50 mM phosphate
buffer (10.5:91.5) pH 3.0, containing 5-octylsulfate sodium salt
(300 mg/l) as the ion-pair reagent and (20 mg/l) Na2EDTA.
Reference standards were prepared in 0.2 N perchloric acid
solution containing 7.9 mM Na2S2O5 and 1.3 mM Na2EDTA.
The sensitivity of the assays was always tested using external
standards and an HPLC system BAS-LC4B with an ampero-
metric detector. The working electrode was glassy carbon, the
columns were Thermo Hypersil-Keystone™ 150×2.1 mm,
5 μmHypersil, Elite C18 (Thermo Electron, Cheshire, UK), and
the HPLC system was connected to a computer. Samples were
quantified by comparison of the areas under peaks with those of
reference standards using HPLC software (Chromatography
Station for Windows™, Watrex International, Inc., San
Francisco, CA). Additionally, the ratios of serotonin (5-HIAA/
5-HT) and dopamine (DOPAC/DA) were calculated as indices
of the serotonin and dopamine turnover rates which reflect the
serotonergic and dopaminergic activity, including release and/or
metabolism function (Cransac et al., 1996; Connor et al., 1997).

2.1.4. Statistical analysis of data
Tissue levels of 5-HT, 5-HIAA, DA and DOPAC as well as

ratios of 5-HIAA/5-HT and DOPAC/DA in control and N2O-
exposed groups of rats were compared using Student's t-test
following testing for normality and equal variance.

2.2. Experiment B

The objective of this experiment was to determine the
influence of blockade of selected 5-HT receptor subtypes and
inhibition of 5-HT reuptake on N2O-induced anxiolytic-like
behavioural response to N2O in the mouse light/dark explora-
tion test.

2.2.1. Animals
Male NIH Swiss mice, 18–22 g body weight, were purchased

from Harlan Laboratories (Indianapolis, IN) and used in these
experiments, which were approved by an institutional animal
care and use committee. Mice were housed five per cage in the
Wegner Hall Vivarium with access to food and water ad libitum.
The facility is maintained on a 12-h light/dark cycle (lights on
0700, lights off 1900) under standard conditions (22±1 °C room
temperature, 33% humidity). Mice were kept in the holding
room for at least 4 days following arrival in the facility. Each
animal was used only once and then discarded.

2.2.2. Apparatus
The light/dark exploration box (450 mm length×270 mm

width×270 mm height) was constructed of acrylic (Abbott
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Plastics, Rockford, IL). An acrylic divider with a 75×75 mm
opening at floor level divided the box into a light compartment
(three-fifths of the total length) and a dark compartment (two-
fifths of the total length). The walls of the light and dark
compartments were made of black and white acrylic, respec-
tively. Behavioural observations and assessments were gen-
erally performed between 1000 and 1400 h. During all
experiments, the light compartment was illuminated by two
40-W white light fluorescent tubes mounted 180 mm directly
overhead. In this paradigm, animals were individually placed in
the center of the light compartment of the box, facing away from
the divider, and then observed for 5 min. The time spent in the
light chamber of the box as well as the number of transitions
between the light and dark compartments were recorded for
each mouse. A mouse was considered to have entered the new
area when all four legs crossed the threshold into the
compartment.

2.2.3. Drugs
The following drugs were used in this experiment: N2O and

O2 (both medical grade, A&L Welding, Spokane, WA), LY-
278,584 maleate (1-methyl-N-(8-methyl-8-azabicyclo[3.2.1]-
oct-3-yl)-1H-indazole-3-carboxamide maleate, Research Bio-
chemicals International, Inc., Natick, MA), and cinanserin
hydrochloride and fluoxetine hydrochloride (Tocris Cookson,
Inc., Ellisville, MO).

N2O and O2 were delivered into the light/dark box via a
length of polyethylene tubing using a portable N2O/O2 dental
sedation system (Porter, Hatfield, PA). The gases were delivered
in a 7:3 proportion in a total inflow rate of 10 l/min (i.e., 7.0 l/
min N2O+3.0 l/min O2=70% N2O in O2). A POET II®
anaesthetic monitoring system was used to ascertain that the
Fig. 1. Comparison of DA, DOPAC, 5HT and 5HIAAA concentrations in the hypotha
left panel) and frontal cortex (lower right panel) of compressed air (solid bars)- and N2

S.E.M. of 10 rats per group. Significance of difference: ⁎p<0.05 compared to room
desired atmosphere of N2O and O2 were attained within the
filling time.

LY-278,584, cinanserin and fluoxetine were prepared in
0.9% physiological saline and administered intraperitoneally at
doses of 1.0, 2.5 and 10 mg/kg, respectively, in a volume of
0.1 ml/10 g body weight. Pretreatment drug doses were
determined in preliminary experiments. N2O and O2 control
groups received the same volume of vehicle (0.9% physiolo-
gical saline). LY-278,584, cinanserin and fluoxetine pretreat-
ment times were all 30 min prior to testing.

2.2.4. Statistical analysis of data
The mean behavioral endpoints for N2O in groups of mice in

the absence and presence of LY-278,584 and fluoxetine were
analyzed by two-way analysis of variance (ANOVA) and post
hoc Bonferroni test. Due to a non-normal distribution, the
influence of cinanserin pretreatment on N2O effects was
analyzed by Kruskal–Wallis non-parametric ANOVA.

3. Results

3.1. Experiment A

The neurochemical results show that a 15-min exposure to
70% N2O caused differential changes in 5-HT and 5-HIAA
concentrations in different brain regions (Fig. 1). In the
hypothalamus, there was a 23% increase in levels of 5-HIAA
but not 5-HT, increasing the ratio of 5-HIAA/5-HT from 1.53 to
1.83 (p<0.05). In the frontal cortex, there was a 26% increase in
amounts of 5-HT but not 5-HIAA, decreasing the ratio of 5-
HIAA/5-HT from 0.92 to 0.83 (p>0.05). In the hippocampus,
there were inappreciable effects of N2O on 5-HT and 5-HIAA
lamus (upper left panel), frontal cortex (upper right panel), hippocampus (lower
O (shaded bars)-exposed rats. Each bar represents the mean and vertical lines the
air exposure.



Fig. 2. The influence of pretreatment with cinanserin (CIN) on N2O-induced anxiolytic-like behavior in the light/dark exploration test: time in light compartment (left)
and number of transitions (right). Each bar represents the mean and vertical lines the S.E.M. of 10–20 mice per group. Significance of difference: ⁎p<0.05 compared to
saline (SAL) control group; #p<0.05 compared to N2O group.
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concentrations, and the ratio of 5-HIAA/5-HT changed from
0.68 to 0.69 (p>0.05). In the corpus striatum, there were also
inconsequential changes in levels of 5-HT and 5-HIAA, and the
ratio of 5-HIAA/5-HTwas decreased slightly from 1.33 to 1.28
(p>0.05).

The HPLC results also showed that exposure to 70% N2O
had no significant effect on either DA or DOPAC in the
hypothalamus, frontal cortex, corpus striatum or hippocampus.

3.2. Experiment B

In the behavioural experiments, exposure to N2O caused
significant increases in both time spent in the light compartment
(p<0.05) and the number of transitions (p<0.05). Pretreatment
with cinanserin had no influence on the N2O-induced increase
in time (p>0.05) but did significantly attenuate the N2O-
induced increase in transitions (p<0.05) (Fig. 2).

Pretreatment with LY-278,584 did not alter the effects of
N2O on increasing the time spent in the light compartment and
the number of transitions in the light/dark exploration test (Fig.
3). A two-way ANOVA (factor N2O×factor LY) was used to
analyze the data [time spent in the light compartment: FN2O

(1,62)=9.98, p<0.005; FLY(1,62)=0.09, p>0.05; FN2O×LY

(1,62)=0.28, p>0.05; number of transitions: FN2O(1,62)=
28.78, p<0.0001; FLY(1,62)=0.51, p>0.05; FN2O×LY(1,62)=
0.27, p>0.05].
Fig. 3. The influence of pretreatment with LY-278,584 (LY) on N2O-induced anxiolyt
and number of transitions (right). Each bar represents the mean and vertical lines the S
saline (SAL) control group.
Pretreatment with FLX had no influence on the effects of
N2O on increasing the time spent in the light compartment and
the number of transitions in the light/dark exploration test (Fig.
4). A two-way ANOVA (factor N2O×factor FLX) was used to
analyze the data [time spent in the light compartment: FN2O

(1,66)=8.71, p<0.01; FFLX(1,66)=0.29, p>0.05; FN2O×FLX

(1,66)=1.33, p>0.05; number of transitions: FN2O(1,66)=
28.82, p<0.0001; FFLX(1,66) =0.54, p>0.05; FN2O × FLX

(1,66)=0.03, p>0.05].

4. Discussion

Our laboratory was the first to report striking similarities in
behavioural response and pharmacological interactions between
N2O and benzodiazepines in animal models of experimental
anxiety (Quock et al., 1987, 1992, 1993; Czech and Quock,
1993; Emmanouil et al., 1994; Li and Quock, 2001). These
findings support the idea that N2O can mimick in some way the
action of benzodiazepines at binding sites that are coupled to
GABAA receptors forming the chloride ion channel (Zorumski
and Isenberg, 1991).

The above conclusion not withstanding, it has also long been
recognized that 5-HT plays a crucial role in the regulation of
anxiety (Gorman et al., 2002). It is plausible that N2O may exert
a direct or indirect action upon 5-HT neurotransmission in
producing its anxiolytic effect. Previously, it was demonstrated
ic-like behavior in the light/dark exploration test: time in light compartment (left)
.E.M. of 10–20 mice per group. Significance of difference: ⁎p<0.05 compared to



Fig. 4. The influence of pretreatment with fluoxetine (FLX) on N2O-induced anxiolytic-like behavior in the light/dark exploration test: time in light compartment (left)
and number of transitions (right). Each bar represents the mean and vertical lines the S.E.M. of 10–20 mice per group. Significance of difference: ⁎p<0.05 compared to
saline (SAL) control group.
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that N2O-induced antinociception was enhanced by blockade of
5-HT1C and/or 5-HT2 receptors and antagonized by blockade of
5-HT3 receptors (Mueller and Quock, 1992).

4.1. Experiment A

While there appear to be many investigations of the influence
of N2O on regional brain levels of the catecholamines
norepinephrine and dopamine (Abdul-Kareem et al., 1991;
Murakawa et al., 1994a; Kofke et al., 1995; Karuri et al., 1998;
Turle et al., 1998), there have been few studies of the effect of
N2O on brain 5-HT.

A 15-min exposure to 70% N2O induced a significant
increase in the 5-HIAA/5-HT ratio in hypothalamus which
reflects an increased serotonergic activity. In particular, this
increase was due to increased 5-HIAA levels. An increase in 5-
HIAA and/or 5-HIAA/5-HT ratio suggests increased 5-HT
activity, because the increase in metabolite tissue levels ex vivo
and/or the increase in metabolite/neurotransmitter ratio reflect
increased neurotransmitter activity in vivo (Shannon et al.,
1986; Thorre et al., 1997). On the other hand, a 15-min
exposure to 70% N2O induced a significant decrease of 5-
HIAA/5-HT ratio in the cerebral cortex, which was attributed to
increased 5-HT tissue content without any effect on the 5-HIAA
content. The differential effects of N2O indicate that serotoner-
gic neurons are differentially affected by exposure to N2O in
distinct brain areas. It has been suggested that central 5-HT
plays a key role in the etiology of anxiety (Handley, 1995;
Pellow and File, 1986). In the neurochemical studies, it was
reported that changes in the content of 5-HT and its turnover
rate in the brain are associated with anxiogenesis (Iversen,
1984; Chaouloff et al., 1998).

Serotonergic synapses are most densely concentrated in
limbic regions including the amygdala and bed nucleus of the
stria terminalis (BNST), thought to play a seminal role in anxiety
(Davis, 1998), as well as the ventral striatum and hypothalamus.
There are much less dense but not insignificant concentrations in
cortical regions as measured by serotonin transporter binding in
humans and non-human primates (Smith et al., 1999).

The limbic system contains dense serotonergic projections.
Studies of fear conditioning have shown that 5-HT inhibits
cortical and thalamic excitatory drive into lateral nucleus of the
amygdala that is critical in fear conditioning (LeDoux, 1998).
These authors conclude that increased 5-HT may decrease the
sensitivity of the amygdala to activating (particularly aversive)
stimuli (Stutzmann et al., 1998). Others have shown in an in vitro
amygdala slice preparation that 5-HT mediates this inhibition
primarily via activation of 5-HT2 receptors on inhibitory
interneurons within basolateral amygdala (Rainnie, 1999).

Serotonin has many electrophysiologic functions in its target
areas (Aghajanian, 1995), and the combination of excitatory,
inhibitory and modulatory roles lead to a complex electro-
physiology that can be summed up as potentiating gating.
Cortical modulation by 5-HT is mediated by multiple excitatory
and inhibitory receptors. There seems to be a complicated dose–
response relationship in cortical circuitry modulated by 5-HT. In
some cases, moderate levels of 5-HT are needed to potentiate
glutamatergic action, but higher 5-HT levels lead to inhibition
(Aghajanian, 1995). Although its role in cortical processing is
complex (Buhot, 1997), its importance is clearly implicated by
the serotonergic modulation by hallucinogens (e.g., LSD and
mescaline) and atypical antipsychotics (e.g., clozapine,
quetiapine).

The rise in 5-HT content in cerebral cortex, seen after
exposure to 70% N2O, suggests that the predominant effect of
N2O under our experimental conditions was to modify the
neuronal activity possibly by inhibiting its own release at the
level of presynaptic 5-HTIA autoreceptors (Pineyro and Blier,
1999). However, the cortical effects of N2O did not seem to be
generalized to hypothalamus, thus showing a regional specifi-
city of N2O effects on serotonergic neurons. Hypothalamic
modulation by 5-HT may be involved in appetite control,
modulation of the HPA stress response and sexual behavior
(Rainnie, 1999). More detailed neurochemical studies are
needed to elucidate the mechanism by which N2O exerts its
anxiolytic activity through the central serotonergic neuron.

No significant differences in the levels of dopamine were
reported. A previous report indicated alterations in steady-state
levels of DA but not of NE in the brains of rats exposed to 75%
N2O for 4 h. However, a 2 h exposure did not alter either DA or
NE levels (Karuri et al., 1998). Variations in methodology,
including the method of sacrifice (microwave killing vs.
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decapitation), may have contributed to these differences; it is,
therefore, difficult to compare the results of our study with that
report.

4.2. Experiment B

Following the identification of 5-HT receptor subunits
(Glennon et al., 1995), there has been a major research
endeavour to determine the roles of these in mediating anxiety
and anxiolytic drug effect. We decided to directly test for 5-HT
involvement by assessing the interaction between N2O and 5-
HT receptor blocking and reuptake inhibitor drugs.

There are earlier reports that 5-HT2 receptors in the
periaqueductal gray matter subserve negative reinforcement
and that 5-HT2 antagonists can suppress this central aversive
system (Jenck et al., 1989). 5-HT2 antagonists can relieve
anxiety (Deakin, 1988; Raheja et al., 1995). The 5-HT1C/5-HT2

antagonist mianserin was reported to be effective in signifi-
cantly reducing the anxiogenic-like behaviour observed in mice
following withdrawal from ethanol (Lal et al., 1993). However,
the 5-HT2 agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-amino-
propane (DOI) was also reported to elicit a strong anxiolytic
effect comparable to that of benzodiazepines (Nic Dhonnchadha
et al., 2003; Ripoll et al., 2005).

Consistent with earlier results (Emmanouil et al., 1994),
exposure to 70% N2O significantly increased the amount of
time spent by mice in the light compartment of the light/dark
box and the number of transitions made by mice between the
light and dark compartments of the box. The increase in time
spent in the light compartment reflects an anxiolytic-like
behavioural response to N2O. The increase in transitions is
related to a locomotor stimulatory effect of N2O in response to
indirect activation of opioid receptors (Hynes and Berkowitz,
1979). There is an apparent involvement of brain dopamine in
the locomotor response to N2O (Dorris and Truong, 1993;
Hynes and Berkowitz, 1983).

In the present study, selective blockade of 5-HT2 receptors
with cinanserin had no effect on theN2O-induced increase in time
spent in the light compartment but did significantly attenuate the
N2O-induced increase in number of intercompartmental transi-
tions. As the time spent in the light compartment is a more critical
index of anxiolytic-like activity, these findings would dissociate
5-HT2 receptors in the behavioural response to N2O.

Other research has implicated 5-HT3 receptors in anxiety,
although this remains controversial. N2O has been reported to
modulate 5-HT3 receptor activity (Yamakura and Harris, 2000;
Suzuki et al., 2002), and 5-HT3 antagonists have been reported
to produce anxiolytic-like behavioural responses in a wide
range of animal tests (Tyers et al., 1987; Jones et al., 1988;
Costall and Naylor, 1992, 2004; Costall et al., 1993). However,
other laboratories were unable to replicate these findings
(Johnston and File, 1988; File and Johnston, 1989). A number
of clinical studies also reported that 5-HT3 antagonists are
generally ineffective in reducing anxiety (Schweizer and
Rickels, 1991; Wilde and Markham, 1996; Olivier et al., 2000).

In our experiments, the blockade of 5-HT3 receptors with
LY-278,584 (Fludzinski et al., 1987) failed to influence the
anxiolytic-like behavioral response of N2O in the light/dark
exploration test, suggesting that 5-HT3 receptors are perhaps not
involved in the behavioural response to N2O. This is consistent
with an earlier report that blockade of 5-HT3 receptors failed to
reduce PAG stimulation-induced aversive behaviour (Jenck et
al., 1989).

LY-278,584 also failed to reduce the number of intercom-
partmental transitions. This is in agreement with earlier reports
that 5-HT3 receptors do not play a role in regulating
spontaneous locomotor activity (Kelley et al., 2003; Hodge et
al., 2004) and 5-HT3 antagonists have no appreciable effect on
locomotor activity (Jones et al., 1988).

An additional experiment was conducted using the selective
5-HT reuptake inhibitor fluoxetine. If N2O promotes the release
of 5-HT to activate 5-HT2 receptors, inhibiting the reuptake of
5-HTwould be expected to enhance the anxiolytic-like response
to N2O. However, the behavioural effect of N2O was unaffected
by fluoxetine in doses previously shown to inhibit 5-HT
reuptake. It is not known whether inhibition of 5-HT in specific
brain regions rather than globally might influence the
behavioural response to N2O.

Brain 5-HT is widely distributed, is seemingly involved in
numerous physiological regulatory mechanisms and may
potentially participate in counteracting mechanisms. Part of
the diversity of functions of 5-HT is likely due to the fact that
effects of 5-HT are mediated by as many as 13 distinct seven-
transmembrane-spanning, G-protein-coupled receptors
(GPCRs) and at least one ligand-gated ion channel (Hoyer
et al., 2002). The multiplicity of 5-HT receptors and their
unique distribution in the limbic system suggest that more
brain region- or pathway-specific analysis of 5-HT function
may be required for a more complete answer to the question of
whether 5-HT mechanisms are involved in the anxiolytic
effect of N2O.

In summary, acute exposure of rats to 70% N2O significantly
elevated 5-HT turnover in the hypothalamus, decreased turn-
over in the frontal cortex but no changes in either hippocampus
or corpus striatum. While cognizant of potential species
differences in drug effect, we found that the N2O-induced
increase in time spent in the light compartment was unaltered by
5-HT2 or 5-HT3 receptor blockade or inhibition of 5-HT
reuptake and the N2O-induced in transitions was sensitive to
antagonism by 5-HT2 receptor blockade but not 5-HT3 receptor
blockade or inhibition of 5-HT reuptake.
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